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Fast-forwarding of Hamiltonians and exponentially
precise measurements
Yosi Atia1 & Dorit Aharonov1

The time-energy uncertainty relation (TEUR) ΔtΔE� 1
2 holds if the Hamiltonian is completely

unknown, but can be violated otherwise; here we initiate a rigorous study describing when

and to what extent such violations can occur. To this end, we propose a computational

version of the TEUR (cTEUR), in which Δt is replaced by the computational complexity of

simulating the measurement. cTEUR violations are proved to occur if and only if the

Hamiltonian can be fast forwarded (FF), namely, simulated for time t with complexity sig-

nificantly smaller than t. Shor’s algorithm provides an example of exponential cTEUR viola-

tions; we show that so do commuting local Hamiltonians and quadratic fermion Hamiltonians.

A general FF method is ruled out, but finding further examples, as well as experimental

demonstrations, are left for future work. We discuss possible connections to sensing and

quantum gravity. This work initiates a rigorous theory of efficiency versus accuracy in energy

measurements using computational complexity language.
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In quantum mechanics, the position-momentum uncertainty
principle Δx � Δp � 1

2 can be proven from the properties of the
Fourier transform for conjugate variables1. In the early years

of quantum mechanics, energy and time were believed to be
related similarly, by a so-called time-energy uncertainty relation
(TEUR), though a similar proof does not apply since time is not
an operator. Several alternative formulations of the TEUR were
studied2–5. Here we consider the TEUR misconception6,7 stating
that the duration Δt of an energy measurement of an eigenstate
ψEj i of a Hamiltonian H (referred to as the “input” Hamiltonian),
is related to the standard deviation of that measurement ΔE, by

ΔE � Δt � 1
2
: ð1Þ

Aharonov et al.8, proved that the TEUR (with a slightly different
error quantification, see methods section) holds whenever the
Hamiltonian H is completely unknown, namely, the experi-
mentalist can only turn H on and off as if it resides in some black-
box. Though not stated this way, the proof of8 holds also when
only the eigenvalues of H are unknown. To the best of our
understanding, the many recent experiments (e.g., refs. 9–18)
demonstrating improved trade-offs between measurement
resources and accuracy, all fall within this model, and as expected
none exhibit a TEUR violation.

However, the TEUR is not a principle of Nature. Already in
1961, Aharonov and Bohm19 gave an example in which Eq. (1)
can be violated to an arbitrary extent. They described a non-
relativistic scattering experiment to measure the energy of a free
particle, where the measurement’s accuracy depends on the time
integral of the interaction Hmeas. between the system and the
measurement device (importantly, Hmeas. is not equal to the input
Hamiltonian H). By increasing the interaction strength by a factor
c> 1 and applying H′

meas: ¼ cHmeas:, the measurement duration
becomes Δt′=Δt/c, providing an arbitrarily large TEUR viola-
tion. A similar violation8 occurs when measuring the energy of a
spin-1/2 particle in a known magnetic field by arbitrarily
increasing the gradient of the magnetic field in a Stern-Gerlach
experiment.

A complete theory of when and to what extent such TEUR
violations can occur is missing. By8, such violations can only
occur in the non-black-box setting, when there exists partial
knowledge about the Hamiltonian. In this more general situation,
various manipulations on the Hamiltonian can be conducted
during the measurement and time duration of measurement can
be traded with various other resources. As we discuss below, in
such cases the TEUR no longer seems to correctly capture the
question of resource-accuracy trade-off.

Our main contribution is in setting the grounds for a rigorous
theory of TEUR violations in the general (not necessarily black-
box) regime. To this end, we make use of the language of
quantum computational complexity. We formulate below a
modified, modern version of the TEUR, called the computational
TEUR (cTEUR), in which Δt is replaced by the computational
complexity of the measurement process. This allows us to handle
the full range of possible manipulations that can be applied
during the energy measurement, ranging from simple manip-
ulations as in ref. 19 to, ultimately, a full-fledged quantum com-
puter aiding the measurement process. We argue that the
computational complexity of the measurement correctly quanti-
fies in all possible cases the total physical resources required to
conduct the measurement. Here, by computational complexity of
the measurement process, we mean the computational complexity
of simulating the measurement process on a quantum computer.

Armed with the cTEUR, we turn to filling in some details in
what seems to be an intricate emerging picture of possible cTEUR

violations. First, we show that while completely unknown
Hamiltonians obey the cTEUR, completely known Hamiltonians
can lead to arbitrary violations of the cTEUR. Shor’s algorithm
provides an intriguing example in which exponential violations
are possible. Our main technical result is proving an equivalence
between the ability to exponentially FF a Hamiltonian and
measuring the energy of its eigenstates to within exponential
accuracy. We show that two well studied classes of physical
Hamiltonians can be FF: commuting local Hamiltonians and
quadratic fermion Hamiltonians. We then show that not all
physically realizable Hamiltonians can be FF (unless a strongly
believed computational complexity conjecture is false). Finally, we
discuss the relation of our work to metrology and sensing, as well
as to recent ideas in the research of quantum gravity.

Results
The exact statement of the computational TEUR. Before
defining the cTEUR, let us first clarify why the TEUR seems less
suitable in a non-black-box setup such as in the Aharonov–Bohm
example19. Note that the interaction strength (or the norm of the
Hamiltonian) is not taken into account in the TEUR. In ref. 19,
this “free” resource can thus replace time duration to achieve
arbitrary violations of the TEUR. Time duration can also be
traded with another resource. The spectral decomposition of the
unitary evolution induced by the measurement Hamiltonian gives

e�iHmeas:Δt ¼
X
j

e�iεjΔt εj
�� � εj
� ��; ð2Þ

where εj are eigenstates of Hmeas.. Evolving according to H′′
meas: ¼P

j εjΔt mod 2π
� �

εj
�� � εj
� �� for one time unit achieves the same

unitary transformation as applying Hmeas. for time Δt. Both the
norm of the new Hamiltonian H′′

meas: and the measurement’s
duration (1 time unit) are now bounded, and yet arbitrarily good
accuracy is achieved; the resource that is now being “freely” used
is computational complexity. In order to apply H′′

meas:, one needs
to diagonalize the original Hamiltonian and compute its eigen-
values to extremely high precision. What is revealed by the above
discussion is that when manipulations can be done while per-
forming the energy measurement, such as increasing the norm,
using different measurement Hamiltonians, etc., this can lead to
strong violations of the TEUR. Nevertheless the resources
invested in the measurement have not decreased but were just
interchanged with others!

Extending the intuition of resource counting in high-precision
measurements (e.g. ref. 20,21), we argue that the “correct” notion
that we would like to capture in the TEUR is not the time
duration but the totality of physical resources one is required to
invest in a measurement. The underpinnings of the area of
quantum computation (see ref. 22) tell us exactly what is the right
quantity to look at when counting resources: the computational
complexity of the measurement, namely, the size of the quantum
circuit simulating the process of the measurement, where size is
measured by the number of two-qubit quantum gates23.

In order to state the computational TEUR (cTEUR), we need to
clarify how we model an energy measurement. We use unitary
implementations of energy measurements (called here “unitary
energy measurements”), which entangle the input eigenstate ψE to
a measurement device consisting of display and work registers, as
follows:

Umeas: ψEj i 0; 0j i ¼
X
E′;E′′

aE;E′;E′′ ψE′j i E′′j i θðE; E′; E′′Þj i: ð3Þ

Measuring the second register in the computational basis gives
the measurement outcome E′′. This unitary is in fact a quantum
algorithm (comprised of local quantum gates23). Following ref. 8,
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we allow the circuit comprising Umeas. also to apply the input
Hamiltonian as a black-box for time t, namely to apply the
operator e−iHt on any choice of a subsystem (this can be applied
many times, where in between the applications we can have
quantum gates). The complexity of this measurement process,
denoted T ðnÞ, is the sum of two components: the first is the
number of quantum gates utilized, the second is the total time the
Hamiltonian was applied, divided by some canonical time unit τ0,
where τ0 is the application time of a single quantum gate. We
stress that classical pre- and post- processing should also be
incorporated into the unitary energy measurement. The motiva-
tion for this definition is the assumption (by the quantum-
complexity Church–Turing thesis24,25), that any quantum
measurement process using the input Hamiltonian as a black-
box, can be simulated by such a unitary energy measurement with
at most polynomial overhead.

Hypothesis 1 (computational TEUR (cTEUR)): A unitary
energy measurement of an eigenstate of an n-qubit Hamiltonian
H, with accuracy error δE satisfies

δE � T ðnÞ 2 Ω
1

polyðnÞ

� �
: ð4Þ

δE (which replaces the standard deviation in Eq. (1)) is the
accuracy error, namely the difference between the correct
eigenvalue E and the measurement outcome E′′. Of course,
accuracy is only guaranteed with some probability η, which we
call confidence. We assume here η> 2/3. The notation Ω(1/poly
(n)) means that δE � T ðnÞ is asymptotically larger than some
function that is inverse polynomial in n. Ω(1/poly(n)) replaces the
constant in the RHS of Eq. (1), to make the definition
independent of the computational model, since T ðnÞ may gain
polynomial factors when translating from one model to another.
The Ω notation implies that units of E are not important. Partial
or full information about the Hamiltonian can be encoded into
the unitary energy measurement; see Methods section for further
details on the definition of the cTEUR. We thus arrive at a
proposition which is rigorously defined and can be systematically
studied.

As to the connection to TEUR, violating the cTEUR is strictly
harder. First, violating the cTEUR implies violating the TEUR
since the duration of time (measured in units of applying a single
quantum gate) is always smaller than the total computational
complexity. The other way around does not hold. An example is
the case of the Aharonov–Bohm experiment19, which violates the
TEUR but not necessarily the cTEUR because a straight-forward
simulation of the measurement Hamiltonian Hmeas. of19 would
result in computational complexity, which grows with the
interaction strength (Supplementary Note 1).

Violations of the cTEUR. We start by studying the two extreme
cases of cTEUR violations. We first extend the proof of ref. 8 to
show (Supplementary Note 3) that if H is completely unknown,
or at least its eigenvalues are completely unknown, the cTEUR
holds, just like the TEUR.

On the other hand, just like the TEUR, the cTEUR can be
arbitrarily violated (though as discussed, not by the example of
ref. 19). Such infinite violations follow immediately if we know
everything there is to know about the Hamiltonian. We capture
this by the notion of QC-solvable Hamiltonian. We say that an n-
qubit Hamiltonian H ¼

P
i λi ψ ij i ψ ih j is QC-solvable if it is

diagonalized efficiently by a quantum computer (the transforma-
tion ij i7! ψ ij i can be applied in poly(n) quantum complexity),
and in addition, its eigenvalues can be efficiently found (the
function i 7! λi can be computed efficiently).

For a simple example, consider the following (clearly QC-
solvable) Hamiltonian on n 1

2-spins:

H ¼
Xn
i¼0

σzi : ð5Þ

A measurement of the spins in the computational basis, followed
by counting how many of the spins are in the state 1j i, would
reveal the eigenvalue to infinite precision, namely, with δE= 0,
and with confidence 1. This measurement can be implemented
with linear computational complexity. It is straight forward to see
that QC-solvable Hamiltonians allow for arbitrary violations of
the cTEUR in much the same way (Supplementary Note 2 for
definitions and proofs).

A very intriguing example which in fact triggered this work
stems from Shor’s factoring algorithm26, which can be translated
into an exponential violation of the cTEUR for a related class of
Hamiltonians. In fact, this follows from the above since these
Hamiltonians are QC-solvable (this is a rather simple exercise in
quantum computation, using Shor’s algorithm). Nevertheless, the
proof that these Hamiltonians violate the cTEUR contains the
essential ingredients towards our main result in the next section,
which provides an if-and-only-if condition for cTEUR even if the
Hamiltonian is not QC-solvable.

Recall that Shor’s algorithm factorizes an n-bit number N by
finding the order r of a randomly chosen y co-prime to N, namely
the period of the sequence y0, y1, y2 … modulo N. The algorithm
uses the following unitary UN,y acting on n-bit strings:

UN;y xj i ¼
x � y mod Nj i 0 � x<N

xj i otherwise

�
ð6Þ

Theorem 1: Let N be an n-bit integer and consider HN;y ¼
UN;y þ Uy

N;y such that gcd(y, N)= 1. There exists a unitary energy
measurement, which given any eigenstate of HN,y has accuracy δE
with confidence 2/3 such that:

δE � T ðnÞ ¼ Oð2�nÞ: ð7Þ

Though HN,y is not a local Hamiltonian, it is physically
realizable (at least theoretically) as it can be simulated efficiently
by a quantum computer (by refs. 27,28). See Fig. 1 for more on this
Hamiltonian.

The proof is straight forward from Shor’s algorithm, in which
eigenvalues of UN,y are measured to exponential precision using
the quantum phase estimation circuit23 (Figs. 2 and 3). One then
uses the fact that UN,y and HN,y share eigenstates, and their
eigenvalues are related by a simple transformation (Supplemen-
tary Note 4).

x

xy

xy2

xy3

xy O (x )

Fig. 1 A physical intuition for HN,y. Vertices are the standard basis; edge
(u, v) represents non-zero entry of H, namely 〈u|HN,y|v〉= 1 and v= uy±1

modN. Multiplication by ymodN partitions the set {0, 1, … N − 1} into
orbits whose (possibly exponential) sizes divide r, the order of y. HN,y

corresponds to a quantum walk52 along the cycles
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The above proof applies Ut
N;y for exponentially large t, utilizing

modular exponentiation, a poly(n) time classical algorithm to
calculate exponential powers of y modulo N. Another way to view
this is that the circuit efficiently simulates the Hamiltonian
generating UN,y for exponentially long times; this is an example of
the notion of fast-forwarding to be defined in the next section,
and already hints at its importance in precision measurements in
general. Figure 3 describes an alternative proof of Theorem 1
based solely on fast forwarding and single qubit interference
(Kitaev et al. phase-estimation algorithm29). Both proofs can be
extended to prove our main Theorem in the next section.

Fast forwarding and precision measurements. In our main
technical result (Theorem 2), we provide an if-and-only-if con-
dition for cTEUR violations. The result is stated using the notion
of fast forwarding of Hamiltonians. A Hamiltonian H can be fast
forwarded (FF) if the evolution with respect to H, to within time t
(namely the unitary e−iHt), can be simulated by a quantum
computer in computational complexity (number of local gates)
much smaller than t (similar notions were discussed else-
where30,31). The definition is refined to allow some error α in the
Hamiltonian simulation, as well as additional ancilla qubits that
should be cleaned by the end of the simulation:

Definition 1 (Fast forwarding a Hamiltonian (FF)). A normal-
ized Hamiltonian H Hk k ¼ 1ð Þ acting on n qubits can be (T(n),α
(n))-fast forwarded if for any t≤ T, there exists a quantum circuit
~U with poly(n) quantum gates, which acts on the n qubits and

additional c= poly(n) ancilla qubits initialized to 0, s.t. for all ψ,

e�iHt � 12c � ~U
� �

ψj i � 0j i
		 		 � α ð8Þ

We also need a more detailed version of the definition of
unitary energy measurement. Here we allow usage of ancilla
qubits (which we do not demand to be cleaned) and define a
demolition parameter β, which quantifies imperfection in the
measurement, and also limits how the input state changes.

Definition 2 (Super-Efficient energy measurements (SEEM)).
A normalized Hamiltonian H Hk k ¼ 1ð Þ acting on n qubits is
(η, δE, β) − SEEM (super-efficient energy measurable) if there
exist two unitaries USEEM; ~USEEM, acting on the n qubits and on
additional output/work qubits s.t.

1. USEEM is a measurement with accuracy δE and confidence η,

USEEM ψEj i 0; 0j i ¼ ψEj i
X
E′

aE′ E′; θðE′Þj i; ð9Þ

where ψE is an eigenstate, E′ is the measurement device’s
output, and θ(E′) is the state of the ancilla qubits used in the
measurement.

2. The complexity of implementing ~USEEM is polynomial in
n and

USEEM � ~USEEM

		 		 � β: ð10Þ

By default, we will require that the demolition β is polynomially
small in n; under this condition and assuming η> 2/3 (in fact,
any constant η> 1/2 would do) the confidence parameter can be
amplified, which means that with only polynomial overhead,
the measurement can be improved to one with confidence
exponentially close to 1 (See Lemma 1 in the SI).

Theorem 2 [Main]: For n, the number of qubits, the following
two sets of Hamiltonians are equivalent:

1. FFexp: A normalized Hamiltonian H acting on n qubits is in
FFexp if there exists an exponentially growing function T= 2Ω
(n) s.t. H is (T, α)-FF for any α=O(1/poly(n)).

2. SEEMexp: A normalized Hamiltonian H acting on n qubits
is in SEEMexp if there exists a function δE= 2−Ω(n) s.t. H is (η,
δE, β)-SEEM for any β=O(1/poly(n)), η= 1 −O(1/poly(n)).

The first direction, (FF implies SEEM), can be done by using
phase estimation (Fig. 4) or Kitaev’s interference trick as in Fig. 3.
For the other direction (SEEM to FF) see Fig. 5. Though the tools
are quite standard, the error analysis is somewhat cumbersome
since all parameters needed to be matched (Supplementary
Note 5).

The attentive reader would notice that the proof described in
Fig. 5 assumes a reversible measurement procedure. However,
as mentioned, by the quantum-complexity Church–Turing
thesis24,25, any physical process, including non-reversible pro-
cesses, can be simulated by a quantum computer with a

Had.|0〉

|0〉

|0 ... 01〉

...
Had. ...

Had.

Ut
N,y

QFT†

|t 〉Σ2 −1
t = 0

Fig. 2 The familiar quantum circuit of Shor’s algorithm. If the input state is
replaced by an eigenvector of UN,y, ψφ with eigenvalue φ, then the output is
an exponentially accurate estimation of φ, implying an equally good
estimation of the corresponding eigenvalue of HN,y. This reasoning holds
with any unitary e−iHt instead of UN,y, hence efficient simulation of e−iHt for
exponential t implies exponential cTEUR violation of H. This gives the seed
of the proof of one direction of Theorem 2

Had.|+〉

|��〉 (UN,y)
2k

Ck

Ck (I+〉     |��〉) = (cos(2k–1�) |0〉 – i sin (2k–1�) |1〉)     |��〉

Fig. 3 Proof of Theorem 1 by Kitaev’s phase estimation29. The circuit Ck is
essentially a Mach-Zehnder interferometer, and UN;y ψφ

�� �
¼ eiφ ψφ

�� �
. The

probability to measure 1 is pk ¼ sin2 ð2k�1φÞ. If (2φ/πmod 4)∈ {0, 3}, p0<1
2

otherwise p0>1
2. Similarly, the estimation of every pk yields one bit of 2φ/π.

The algorithm estimates each pk by repeating the corresponding
measurement poly(n) times, thus 1/exp(n) accuracy of φ is reached with
total complexity poly(n): Ck is efficiently implemented even for k= poly(n)
using modular exponentiation to implement exponential powers of UN,y

(Supplementary Note 4)

Had.

... Had.

Had.

~
U

20

~
U

2 – 1· · ·|�E〉

|0〉

|0〉

QFT†

|t 〉Σ2 −1
t = 0

Fig. 4 A circuit proving H 2 FFexp ) H 2 SEEMexp. In this ‘-qubit phase
estimation circuit, the gate ~Ut is the α-approximation of e−iHt; it is
implemented efficiently for polynomial ‘ (or exponential t) if H∈ FFexp. In
that case, the circuit represents a SEEM. The FF error α accumulates
additively, reducing confidence (η) and adding demolition to the energy
measurement (β) (Supplementary Note 5)
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polynomial overhead. Hence under this thesis, our results apply
to all energy measurements and not only to reversible ones.

Fast-forwarding physical Hamiltonians. Using the equivalence
provided by Theorem 2, we provide two new interesting classes of
physical Hamiltonians, which are not known to be QC-solvable,
yet can be exponentially FF (consequently, by Theorem 2,
their energy eigenvalues can be efficiently measured to
exponential precision): these are commuting local Hamiltonians,
and quadratic fermion Hamiltonians (including Anderson
localization32).

A commuting k-local Hamiltonian takes the form

H ¼
X
j

Hj; ð11Þ

where every term Hj acts non-trivially on at most on k qubits, and
[Hi, Hj]= 0 for all i, j. When k is a constant (or even up to
logarithmic), such Hamiltonians can be FF:

Theorem 3. If H is an n-qubit normalized commuting k-local
Hamiltonian, with k=O(log(n)), then it can be (T,α)-fast
forwarded for T= 2O(n) and arbitrary exponentially small α.

Since the terms Hj commute, the problem reduces to FFing
each term independently. This follows since the eigenvalues

and eigenvectors of each local term can be efficiently calculated
(even classically) with exponential accuracy33,34 (Supplementary
Note 6).

Note that despite their simplicity, commuting local Hamilto-
nians generate highly non-trivial dynamics; they can efficiently
generate distributions which are classically hard to sample from
(under widely believed computational assumptions)35,36.

Similarly, quadratic fermion Hamiltonians can also be
exponentially FF:

H ¼
Xm
i;j

Ai;ja
y
i aj þ

1
2

X
ij

Bi;jaiaj þ
1
2

X
i;j

B�
j;ia

y
i a

y
j

A ¼Ay; B ¼ By

ð12Þ

where ayi ; ai are fermions creation and annihilation operators.
Note that n indistinguishable fermions distributed over m= poly

(n) modes are described by the Fock space of dimension
m
n

� �
.

Assuming that we can physically implement any quadratic
Hamiltonian, s.t. the error in each coefficient is at most inverse
polynomial, we can thus prove:

Theorem 4. Let H be a quadratic Hamiltonian of n fermions
with poly(n) modes. H can be (T,α)-fast forwarded with T = 2O(n)

and arbitrary inverse polynomial α.
The proof standardly uses the Bogoliubov transformation37,38

to “diagonalize” the traceless part of H and arrive at a free-
fermion Hamiltonian (Supplementary Note 7). Extending to
Bosons is left for future work.

No generic fast forwarding. Perhaps any physically realistic
Hamiltonian (one which is efficiently simulable by a quantum
circuit) can be FF? A result of ref. 39 together with our Theorem 2
proves that this is impossible (assuming the common
computational complexity assumption that BQP≠ PSPACE
(Supplementary Note 8 for definitions). Here we provide a sim-
pler proof of this statement, which highlights the role of FF and
SEEM (See Theorem 1 in SI).

×t /t

Phase|�E〉

|0 ... 0〉

U|0 ... 0〉   m U   
†

Fig. 5 A circuit proving H 2 SEEMexp ) H 2 FFexp. The gate UM
encapsulates m unitary energy measurements, the median of which is
written on the topmost register (the median amplifies the confidence of the
measurement). The state is then multiplied by a phase which equals the
product of the median with t, after which UM is undone to ensure a clean
computation. Effectively, the circuit simulates e−iHt in polynomial
complexity. Careful treatment is required for a measurement that perturbs
ψE, i.e., β> 0 (Supplementary Note 5)

v1 − 1

v1 − 2

v1 + 2

v1 + 1

v1

v0 v0 v1v0

L − 10

a

Vertex Vertex VertexL − 1

b

L − 1 L − 1

c d

Fig. 6 Solving OEOTL by FF. Let HG be the adjacency matrix of the graph G, and denote by 0, 1, …, L − 1 the consecutive vertices of the line (L − 1 is the
OEOTL). The panels show the probability distribution of the states in the first iteration of the algorithm. b The initial node v0= 0. c H0 can be FF by
assumption, and thus by theorem 2 we can SEEM with respect to H0=HG, reaching approximately an eigenstate. d Measuring in the computational basis
yields v1. Eigenstates are symmetric around the middle of the line, thus v1 is often found past the middle (a “successful iteration”). We iterate with
H1 ¼ H0 � v1j i v1 � 1h j � v1 � 1j i v1h j to prevent recession (see a for the illustration of H1). We prove by standard argument from probability theory n of 100n
iterations are successful with high probability, leaving the remaining path small enough for brute-force search to work. Here we assumed SEEM with
demolition β= 0, but it’s not difficult to correct for small β (Supplementary Note 8)
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The proof assumes by contradiction that any such Hamiltonian
can be FF, and uses this to design a quantum polynomial time
algorithm for the other end of this line (OEOTL) problem, which
is known40 to be as hard as any problem in PSPACE.
Such an algorithm contradicts the widely held assumption
PSPACE 6� BQP.

Definition 3 (OEOTL). Let G= (V, E) be a directed graph with
2n vertices (indexed by n bits strings). G contains only directed
paths, directed cycles, or isolated vertices. G is given by two
polynomial size classical circuits: S (which computes the
successor S(u)= v of a node u in G), and P (which computes
the predecessor, P(v)= u)). We are promised that 0n has no
predecessor; the problem is to find the end of the line that starts
with 0n.

A sketch for the algorithm is given in Fig. 6.

Discussion
A fundamental question remains: What is the true physical rea-
son that a system admits FF (or equivalently, SEEM), which
systems allow it and to what extent? The straight-forward way to
measure the energy of a given Hamiltonian is to apply it as a
black-box; hence, one would expect the TEUR (and thus also the
cTEUR) to hold in most physical experiments. However, should
we expect a typical Hamiltonian to exponentially violate the
cTEUR if we do allow non-black access? We suspect that most
Hamiltonians do not allow such violations. Proving this would
clarify the picture of possible cTEUR violations. One way toward
a proof is to try to mimic our no-general-FF theorem 1 for a
randomly chosen local Hamiltonian; perhaps this can be done by
showing that a randomly chosen Hamiltonian is computationally
universal (as in ref. 41); In fact, a stronger notion is needed, where
the error when simulating polynomial quantum circuit is expo-
nentially small. An intriguing question is whether many-body
localized systems42, cousins of commuting local Hamiltonians,
belong to this “fortunate” class of Hamiltonians allowing FF.

Two notions of “fully understanding” a Hamiltonian should
not be confused. Having full information about the Hamiltonian
means that we know all the parameters describing H (as in
Theorems 1,3,4,1). This can be mathematically described as
having an efficient quantum circuit simulating the Hamiltonian
for unit time—which certainly does not imply FF (Theorem 1).
On the other hand, we’ve shown that the Hamiltonian being QC-
solvable (which is a much stronger notion of fully understanding
the Hamiltonian) does imply FF. One may ask: is full information
about the Hamiltonian needed to achieve FF? All our FF exam-
ples do make use of the exact Hamiltonian description (Theorems
3 and 4), but ref. 8 and theorem 7 do not rule out FF for partially
known Hamiltonians. It is conceivable that in certain cases, one
can use partial knowledge about the Hamiltonian in conjunction
with quantum computational techniques to go beyond current
super-sensitivity results43,44 bounded by the Heisenberg limit (see

ref. 45). Additional connections of this work to metrology and
sensing are discussed in Supplementary Note 9.

We believe that this work poses an important first step towards
a rigorous theory of the possibilities of TEUR violations, and
opens the exciting possibility that for certain Hamiltonians, effi-
cient and extremely accurate energy measurements can be
achieved using quantum computing techniques; these may be
realizable even before full-fledged quantum computers exist.

Methods
Further details about the definition of cTEUR. We provide some missing details
in the definition of the cTEUR. First, the confidence η is defined as follows.

Definition 4 (η-accuracy): A unitary energy measurement as in Eq. (3) is said to
have accuracy δE with confidence η (we say it is a measurement of η-accuracy δE) if
given an eigenstate with energy E, the measurement outcome E′ satisfies

Pr
E′

E � E′j j � δEð Þ � η: ð13Þ

We usually set η= 2/3. We note that any constant η> 1/2 can be amplified to
become close to 1, assuming that the demolition parameter β is polynomially small.
To see how this amplification is done, recall from definition 2 that polynomially
small β implies that the perturbation of an eigenstate of H by the measurement is
polynomially small. A small perturbation allows us to repeat the measurement m =
poly(n) times, and calculate the median of the measurements outcome. The median
would be within δE from E with probability, which approaches 1 exponentially fast
in m, the number of repetitions (see the Confidence Amplification lemma, Lemma
1 below). The resulting unitary energy measurement would have the same δE, the
confidence would be exponentially close to 1 and the demolition parameter would
deteriorate by a factor of m.

We further explain the asymptotic notation Ω in the proposition. This notation
is defined as follows: A function f(n) is said to be ∈ Ω(g(n)) if asymptotically it is
larger than cg(n) for some non-negative constant c, namely, there exists a constant
c> 0, and a natural number n0 s.t. f(n)> cg(n) for any n> n0. Hence, if
δE � T ðnÞ 2 1

polyðnÞ, this means that there exists an inverse polynomial function,
which starting from some large enough n, bounds the product δE � T ðnÞ from
below.

To be completely rigorous, we note that the cTEUR proposition should consider
a family of Hamiltonians fHng1n¼1 and a family of unitary energy measurements
fUng1n¼1, with increasing number of qubits. This is left implicit in this article. As is
common in computational complexity, fUng1n¼1 are assumed to be designed by a
poly(n) classical algorithm whose input is n, and which may depend on any
(possibly partial) information we have about the Hamiltonian.

We use the accuracy error as our error model because it conveniently translates
to a unitary error in fast-forwarding (Theorem 2), but how does accuracy error
compare to the standard deviation used in the TEUR?

Note that requiring the measurement to have accuracy error δE with confidence
η is a slightly weaker requirement than the common requirement that the standard
deviation is δE. In particular, when the standard deviation is specified, it is assumed
implicitly that the expectation of the outcome is the correct value E. However, the
expectation of the outcome E′ of a measurement of accuracy δE and confidence 2/3,
might be arbitrarily far from E, namely, δE cannot give an upper bound on ΔE
without further assumptions. A weak assumption suffices though. Assuming that
Hk k is at most exponential, one can prove that ΔE � ffiffiffi

η
p

δE þ 2
ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
Hk k

� �
, and

since η can be amplified to be exponentially close to one, this bound is meaningful
(Supplementary Note 5). Conversely, δE cannot be bounded from above by ΔE
because the standard deviation of the measurement could be 0 but still its
expectation can be far from the correct E.

Proof sketch of Theorem 2 (main). We give here an outline of the main steps in
the proof of Theorem 2. The proof builds on two tools. The confidence amplifi-
cation lemma gives efficient exponential confidence amplification of a low-

3
4 , �E =

1
T , � = 16� log 32T)–SEEM

Concatenation (Lemma 2)

Phaseestimation
(see Lemma 5 in SI)

Confidence amplification
(Lemma 1)

(n − 1)�
2 (1 −

1
2� )

2

�E
�

, � = 2n�)–FF

Confidence amplification
(lemma 1)

Measure the energy unitarily,
denote the result by E ′,

add phase e−iE ′ t  for t  ≤  �E /�,
uncompute.

(T, �)–FF

(16T, 16�)–FF

(� =

1
2 , �E, �)–SEEM(� >

(� = 1 – e−n/18, �E = 1
T , � = 16n� log 32T)–SEEM

(1 − e− , �E, (n − 1)�)–SEEM

(T =

Fig. 7 Sketch of the equivalence proof in both directions. The boxes indicate the guaranteed parameters, and the arrows are accompanied by the lemmas
used to derive them
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demolition energy measurement, without increasing the demolition parameter β
too much:

Lemma 1 (Confidence amplification). Let η>1
2, and let H be a Hamiltonian on n

qubits, Hk k � 1, which is (η, δE, β) − SEEM. Then for any integer m≥ 1, H is also

ð1� e
�m
2 1� 1

2η

� �2
; δE; mβÞ–SEEM.

The following lemma allows increasing the T parameter of FF at the cost of
degrading α:

Lemma 2 (FF by concatenation). For any integer κ> 0, if a Hamiltonian is
(T, α)-FF, it is also (Tκ, ακ)-FF.

These lemmas can be used as follows to derive the proof. To prove the first
direction, FFexp ) SEEMexp: we first apply the FF by concatenation lemma
(Lemma 2), to improve the FF parameters; using this improved FF ability, we can
apply the phase estimation circuit (Fig. 4) to achieve highly accurate energy
measurement, and lastly the parameters are improved by confidence amplification
(Lemma 1).

To prove the other direction, SEEMexp ) FFexp: The idea is to estimate the
energy using the SEEM unitarily, then apply the correct phase (energy multiplied
by the desired time) based on the resulting estimated value of the energy, and then
run the energy estimation backwards to erase any garbage, in order to derive the
unitary corresponding to the application of the Hamiltonian for time t. Once again,
the confidence amplification lemma (Lemma 1) is required in order to gain back
the parameters which were degraded.

The details are not completely trivial due to the trade-off between the
parameters, which all need to match up. The main steps are depicted in Fig. 7. See
Supplementary Note 5 for full proofs of Theorem 2 and the Lemmas.

This proof, like the proof of Theorem 1 could be modified to rely on Kitaev’s
phase estimation without making use of Fourier transform, which would give a
more efficient computation from the point of view of making use of quantum
computations versus classical ones.

We note that Theorem 2 can be extended to other functions T(n) and δE as a
function of n. There seems to be, however, some inherent (constant) loss in
parameters when moving between FF for time T, and SEEM with accuracy 1/T, at
least in the way the above proof works; which is why Theorem 2 is stated using
asymptotic functions.

Relation of Theorem 1 to no-FF in other Hamiltonian models. We have dis-
cussed in the above the case of completely unknown Hamiltonians, as in ref. 8, as
well as the general setting, which is the main subject of this article, in which we can
have full information about the Hamiltonian (namely, we have a circuit for effi-
ciently simulating the Hamiltonian for unit time) but the resources that are
bounded are the computational complexity.

A different model, was studied in refs. 28,30 and is called the “Hamiltonian
query model”. In this model, access to the matrix entries of the Hamiltonian is by
queries to an oracle, which, given the index of a row, returns all non-zero elements
in the row. This model seems less interesting from a physics perspective, however,
there are interesting theoretical results which can be derived. In particular30 proved
that there exist Hamiltonians, which require exponentially many queries in this
model, in order to simulate their evolution to within exponential time. This can be
viewed as a no-generic-FF theorem in this model.

We note that this theorem does not follow from Theorem 7, the cTEUR for
unknown Hamiltonians (adapted from8, see Supplementary Note 3 for definition),
though Theorem 7 together with our equivalence Theorem 2 implies a no-generic-
FF for unknown Hamiltonians. The reason is that in the query model the
Hamiltonian is not completely unknown, and possibly this additional information
about the Hamiltonian can be used in order to achieve FF.

Summarizing the comparison between the three models, a Hamiltonian given as
a black-box or one with unknown eigenvalues cannot be FF as this violates the
TEUR/cTEUR for unknown Hamiltonians (This follows from the results of
Aharonov et al.8 and our extension of it, Theorem 7 in Supplementary Note 3,
together with our main Theorem 2). Adding information on the Hamiltonian when
using the query model still won’t allow a general FF procedure due to query
complexity bounds30. Theorem 1 is the corresponding theorem for the case of
2-sparse row computable Hamiltonians; Since we are no longer in the black-box
model, nor even in the query model, we must condition the result on
computational assumptions i.e., the widely believed assumption that PSPACE ≠
BQP (see Supplementary Note 8 for exact definition of these classes).

Theorem 1 and a recent conjecture in quantum gravity. Theorem 1 is tightly
related to a recent result by Aaronson and Susskind46, which was derived in the
context of a conjecture in quantum gravity. This conjecture, due to Susskind31

connects the length of non-traversable wormholes to the computational complexity
of approximating certain quantum states.

In this context, one is interested in a maximally entangled state, which evolves
in time under the transformation:

ψ tj i ¼ 2�n=2
X2n
y¼1

yj i � Ut yj i; ð14Þ

where U is a unitary related to the physical Hamiltonian in question (see ref. 46).
Susskind31 proposed that the CFT dual of the length of non-traversable wormholes
is equal to the quantum circuit complexity required to approximate ψ tj i. Aaronson
and Susskind (manuscript in preperation; see ref. 46) do not handle the particular U
of the CFT, but prove that there exists a unitary U such that the state in Eq. (14) is
hard to approximate (more precisely, for some t< 2n, ψt with this U cannot be
approximated efficiently) under a commonly believed computational assumption
(PSPACE 6� PP=poly). In their terminology, they show that there are no
“shortcuts” to generating the state ψt for such a U. This closely ties with our no-
generic FF Theorem 1, though it seems that their theorem does not directly imply
Theorem 1. Note that if the Hamiltonian HS generating the unitary U, s.t.
U ¼ e�iHS , could be exponentially FF, the state complexity of ψt would by
polynomial for t at most exponential. Thus, impossibility of FF of H follows from
impossibility to generate ψt efficiently. The other way round might not hold—it is
conceivable that FF is impossible, but the state ψt can be generated efficiently by a
different way. This is why the computational assumption in Aaronson and
Susskind’s result is stronger than ours, and involves the class PP and not BQP. The
two other differences between the two theorems (Aaronson and Susskind work in
the non-uniform setting, namely use PP/poly rather than PP, and consider
approximation of the state to within a constant), depend on the setting and are less
important.

An interesting question in this context is whether it is it possible to prove
specifically that the above mentioned Hamiltonian HS cannot be FF. Perhaps, this
can be done using similar ideas to those mentioned in the discussion section.

Quantum algorithms and fast-forwarding Hamiltonians. We have seen that the
factoring algorithm can be interpreted as an efficient and exponentially accurate
energy measurement utilizing fast forwarding. One can ask a conceptual question:
is fast-forwarding Hamiltonians the true underlying source for all quantum algo-
rithmic speed-ups? It turns out that in fact this is far from being the case. Indeed,
like in Shor’s algorithm, the Abelian hidden subgroup problem (HSP) is solved47,48

by efficiently utilizing phase estimation to exponential accuracy, thus one can
associate a Hamiltonian to the problem, and the quantum algorithm can be
translated to a cTEUR violation in measuring the energies with respect to this
Hamiltonian. We believe (though we have not worked out the details) that this is
also the case for the recent extensions of Shor’s algorithm to finding unit groups of
number fields49,50, which are also based on phase estimation of the eigenvalue of a
unitary applied to exponential powers. However, to our current understanding,
other than these few direct extensions of Shor’s algorithm, none of the other known
quantum algorithmic speed-ups can be related to fast forwarding–not even
quadratic fast forwarding (!). We note that some of these algorithms can be viewed
an an energy measurement of a corresponding Hamiltonian, as we describe below,
however, the quantum speed-up does not result from a FF of this Hamiltonian. We
describe this in three interesting cases.

1. The exponential speed-up of the quantum walk on two glued binary trees51: In
this algorithm, an exponential quantum speed up is achieved by showing that
a quantum algorithm can traverse a graph with exponentially many nodes, in
polynomial time. The graph consists of two binary trees glued in their leaves.
As shown in ref. 51, the glued trees problem is highly symmetric, and the
search is limited to a subspace of dimension linear in the number of qubits. In
addition ref. 51, show that the spectral gap of the Hamiltonian in that subspace
is inverse polynomial.

One can in fact view this process as an energy measurement, except not an
accurate one. To see how continuous time quantum walks (CTQW)52 are
related to energy measurements, consider the following analogy: In CTQW, a
value t is chosen uniformly over [0, T] and the system is evolved by e−iHt and
then measured. Almost equivalently, one can add to the state an ancilla
register, initiated in the superposition over all values of time 1ffiffiffi

T
p
PT�1

t¼0 tj i,
and then apply the Hamiltonian on the state for a duration t conditioned that
the value in the ancilla register is t, and finally discard the t register. This latter
procedure is effectively a phase estimation (i.e., energy measurement), with
the outcome traced out.

However, the algorithm in ref. 51 only requires polynomial accuracy to
perform this energy measurement, and in order to do this it simply applies the
Hamiltonian for a polynomial amount of time, and does not utilize any fast-
forwarding (equivalently, it does not violate the cTEUR).

2. Grover’s quadratic algorithmic speed-up53: In Grover’s algorithm, an initial
state sj i, which is a uniform superposition over a search space of size N is
rotated slowly to the marked state ω, and reaches its proximity after O(N−1/2)
applications of the iterator U ¼ 1� 2 ωj i ωh jð Þ 2 sj i sh j � 1ð Þ. U may be
written as:

U ¼ 1� 2 ωj i ωh jð Þ�
2
N
ð N � 1ð Þ s′j i s′h j þ ωj i ωh j þ

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
s′j i ωh j þ ωj i s′h jð ÞÞ � 1

� �
;

ð15Þ

where sj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þ=N

p
s′j i þ

ffiffiffiffiffiffiffiffiffi
1=N

p
ωj i. The subspace spanned by s′, ω is
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invariant to U; by denoting ωj i ¼ 0j i and s′j i ¼ 1j i,

U ¼ 1
N

N � 2 �2
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p

2
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
N � 2

 !

¼ 1cos 2
ffiffiffiffiffiffiffi
N�1

p

N

� �
� isin 2

ffiffiffiffiffiffiffi
N�1

p

N

� �
σy þ O N�3=2

� �
¼ e�2i

ffiffiffiffiffi
N�1

p

N σy þ O N�3=2
� �

:

ð16Þ

Here we used the following:

eiφσ
y ¼ 1cosðφÞ þ iσy sinðφÞ ð17Þ

1� 2
N
þ O N�2

� �
¼ cos

2
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p

N

� �
ð18Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p

N
þ O N�3=2

� �
¼ sin

2
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p

N

� �
: ð19Þ

Denote H ¼ 2σy=
ffiffiffiffi
N

p
; then H has eigenstates 1ffiffi

2
p s′j i± i ωj ið Þ, and addition-

ally,

e�iH � U
		 		 ¼ e�2iσy=

ffiffiffi
N

p
� e�2iσy

ffiffiffiffiffiffiffi
N�1

p
=N þ O N�3=2

� �			 			 ¼ O N�1
� �

: ð20Þ

Measuring an eigenstate of H in the original standard basis returns ω with
probability half. Thus, an algorithm equivalent to Grover’s is to apply an
energy measurement of the state s with respect to the Hamiltonian H, with
sufficient accuracy to arrive at a state close to an eigenstate, and then to
measure in the original standard basis. Since the two eigenvalues differ by
≈N – 1/2, it turns out that it suffices to perform a measurement with η-
accuracy N−1/2/10 for η= 1–10−3 to achieve probability at least 1/3 to measure
ω. The exact argument follows from similar arguments to those in the proof of
our no-general-FF Theorem 1, using claims 7 and 8 (see Supplementary
Note 8). We omit the details. Thus, the quadratic speed-up is achieved by the
mere fact that the accuracy required to separate the two eigenstates is of the
order of 1=

ffiffiffiffi
N

p
and not 1/N.

3. Exponentially fast solutions of linear equations54,55: The algorithm54
finds the

state xj i ¼
P

i xi ij i for x that solves the equation Ax= b. The matrix A is an
N ×N Hermitian s-row computable matrix, namely every row in A has at
most s non-zero elements, and there exists an efficient algorithm recieving a
row number as input, and outputing the position and values of these non-zero
elements. The vector b is given as a state: bj i ¼

P
i bi ij i. The time complexity

of the algorithm is OðpolyðlogðNÞÞ; κ; 1=ϵÞ, where κ is the condition number
of A, i.e., the ratio between the largest and smallest eigenvalues of A, and ϵ is
the additive error of |x〉 allowed. The heart of the algorithm is a phase
estimation of the unitary matrix eiA applied to the state |b〉. The Hamiltonian
simulation procedures used to simulate e−iAt in ref. 54,55 apply for any A, thus
both require at least linear computational complexity in t. If it weren’t so, one
could violate cTEUR for unknown Hamiltonians—but this is, as we know,
impossible (See Theorem 7 in SI). Hence no fast forwarding is involved.

As for other famous quantum algorithmic speed-ups, these do not seem to have
a sensible description in terms of energy measurements of associated Hamiltonians,
so they also do not seem to be related to FF. In particular, Kuperberg’s sub-
exponential algorithm for finding a hidden subgroup of the Dihedral group56 and
BQP-complete Topological Quantum Field Theory (TQFT) based quantum
algorithms57–59, do not seem to have a FF origin.

Data availability. The data sharing not applicable to this article as no data sets
were generated or analyzed during the current study.
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